ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts – GUOSHI

Short Description:


Product Detail

Product Tags

Related Video

Feedback (2)

We constantly believe that one's character decides products' high quality, the details decides products' high-quality ,together with the REALISTIC,EFFICIENT AND INNOVATIVE crew spirit for China Cnc Lathing Manufacturer , Welded Tube , Steel Pin , All products are manufactured with advanced equipment and strict QC procedures in order to ensure high quality. Welcome customers new and old to contact us for business cooperation.
ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts – GUOSHI Detail:

Carbon steel is a steel with carbon content from about 0.05 up to 3.8 per cent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
1. no minimum content is specified or required for chromium, cobalt, molybdenum, nickel, niobium, titanium, tungsten, vanadium, zirconium, or any other element to be added to obtain a desired alloying effect;
2. the specified minimum for copper does not exceed 0.40 per cent;
3. or the maximum content specified for any of the following elements does not exceed the percentages noted: manganese 1.65 per cent; silicon 0.60 per cent; copper 0.60 per cent.
The term carbon steel may also be used in reference to steel which is not stainless steel; in this use carbon steel may include alloy steels. High carbon steel has many different uses such as milling machines, cutting tools (such as chisels) and high strength wires. These applications require a much finer microstructure, which improves the toughness.

As the carbon percentage content rises, steel has the ability to become harder and stronger through heat treating; however, it becomes less ductile. Regardless of the heat treatment, a higher carbon content reduces weldability. In carbon steels, the higher carbon content lowers the melting point.

The purpose of heat treating carbon steel is to change the mechanical properties of steel, usually ductility, hardness, yield strength, or impact resistance. Note that the electrical and thermal conductivity are only slightly altered. As with most strengthening techniques for steel, Young’s modulus (elasticity) is unaffected. All treatments of steel trade ductility for increased strength and vice versa. Iron has a higher solubility for carbon in the austenite phase; therefore all heat treatments, except spheroidizing and process annealing, start by heating the steel to a temperature at which the austenitic phase can exist. The steel is then quenched (heat drawn out) at a moderate to low rate allowing carbon to diffuse out of the austenite forming iron-carbide (cementite) and leaving ferrite, or at a high rate, trapping the carbon within the iron thus forming martensite. The rate at which the steel is cooled through the eutectoid temperature (about 727 °C) affects the rate at which carbon diffuses out of austenite and forms cementite. Generally speaking, cooling swiftly will leave iron carbide finely dispersed and produce a fine grained pearlite and cooling slowly will give a coarser pearlite. Cooling a hypoeutectoid steel (less than 0.77 wt% C) results in a lamellar-pearlitic structure of iron carbide layers with α-ferrite (nearly pure iron) between. If it is hypereutectoid steel (more than 0.77 wt% C) then the structure is full pearlite with small grains (larger than the pearlite lamella) of cementite formed on the grain boundaries. A eutectoid steel (0.77% carbon) will have a pearlite structure throughout the grains with no cementite at the boundaries. The relative amounts of constituents are found using the lever rule. The following is a list of the types of heat treatments possible.

Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low alloy steels and high alloy steels. The difference between the two is disputed. Smith and Hashemi define the difference at 4.0%, while Degarmo, et al., define it at 8.0%. Most commonly, the phrase “alloy steel” refers to low-alloy steels.

Strictly speaking, every steel is an alloy, but not all steels are called “alloy steels”. The simplest steels are iron (Fe) alloyed with carbon (C) (about 0.1% to 1%, depending on type). However, the term “alloy steel” is the standard term referring to steels with other alloying elements added deliberately in addition to the carbon. Common alloyants include manganese (the most common one), nickel, chromium, molybdenum, vanadium, silicon, and boron. Less common alloyants include aluminium, cobalt, copper, cerium, niobium, titanium, tungsten, tin, zinc, lead, and zirconium.

The following is a range of improved properties in alloy steels (as compared to carbon steels): strength, hardness, toughness, wear resistance, corrosion resistance, hardenability, and hot hardness. To achieve some of these improved properties the metal may require heat treating.

Some of these find uses in exotic and highly-demanding applications, such as in the turbine blades of jet engines, and in nuclear reactors. Because of the ferromagnetic properties of iron, some steel alloys find important applications where their responses to magnetism are very important, including in electric motors and in transformers.

Spheroidizing
Spheroidite forms when carbon steel is heated to approximately 700 °C for over 30 hours. Spheroidite can form at lower temperatures but the time needed drastically increases, as this is a diffusion-controlled process. The result is a structure of rods or spheres of cementite within primary structure (ferrite or pearlite, depending on which side of the eutectoid you are on). The purpose is to soften higher carbon steels and allow more formability. This is the softest and most ductile form of steel.

Full annealing
Carbon steel is heated to approximately 40 °C above Ac3 or Acm for 1 hour; this ensures all the ferrite transforms into austenite (although cementite might still exist if the carbon content is greater than the eutectoid). The steel must then be cooled slowly, in the realm of 20 °C (36 °F) per hour. Usually it is just furnace cooled, where the furnace is turned off with the steel still inside. This results in a coarse pearlitic structure, which means the “bands” of pearlite are thick. Fully annealed steel is soft and ductile, with no internal stresses, which is often necessary for cost-effective forming. Only spheroidized steel is softer and more ductile.

Process annealing
A process used to relieve stress in a cold-worked carbon steel with less than 0.3% C. The steel is usually heated to 550–650 °C for 1 hour, but sometimes temperatures as high as 700 °C. The image rightward[clarification needed] shows the area where process annealing occurs.

Isothermal annealing
It is a process in which hypoeutectoid steel is heated above the upper critical temperature. This temperature is maintained for a time and then reduced to below the lower critical temperature and is again maintained. It is then cooled to room temperature. This method eliminates any temperature gradient.

Normalizing
Carbon steel is heated to approximately 55 °C above Ac3 or Acm for 1 hour; this ensures the steel completely transforms to austenite. The steel is then air-cooled, which is a cooling rate of approximately 38 °C (100 °F) per minute. This results in a fine pearlitic structure, and a more-uniform structure. Normalized steel has a higher strength than annealed steel; it has a relatively high strength and hardness.

Quenching
Carbon steel with at least 0.4 wt% C is heated to normalizing temperatures and then rapidly cooled (quenched) in water, brine, or oil to the critical temperature. The critical temperature is dependent on the carbon content, but as a general rule is lower as the carbon content increases. This results in a martensitic structure; a form of steel that possesses a super-saturated carbon content in a deformed body-centered cubic (BCC) crystalline structure, properly termed body-centered tetragonal (BCT), with much internal stress. Thus quenched steel is extremely hard but brittle, usually too brittle for practical purposes. These internal stresses may cause stress cracks on the surface. Quenched steel is approximately three times harder (four with more carbon) than normalized steel.

Martempering (marquenching)
Martempering is not actually a tempering procedure, hence the term marquenching. It is a form of isothermal heat treatment applied after an initial quench, typically in a molten salt bath, at a temperature just above the “martensite start temperature”. At this temperature, residual stresses within the material are relieved and some bainite may be formed from the retained austenite which did not have time to transform into anything else. In industry, this is a process used to control the ductility and hardness of a material. With longer marquenching, the ductility increases with a minimal loss in strength; the steel is held in this solution until the inner and outer temperatures of the part equalize. Then the steel is cooled at a moderate speed to keep the temperature gradient minimal. Not only does this process reduce internal stresses and stress cracks, but it also increases the impact resistance.

Tempering
This is the most common heat treatment encountered, because the final properties can be precisely determined by the temperature and time of the tempering. Tempering involves reheating quenched steel to a temperature below the eutectoid temperature then cooling. The elevated temperature allows very small amounts of spheroidite to form, which restores ductility, but reduces hardness. Actual temperatures and times are carefully chosen for each composition.

Austempering
The austempering process is the same as martempering, except the quench is interrupted and the steel is held in the molten salt bath at temperatures between 205 °C and 540 °C, and then cooled at a moderate rate. The resulting steel, called bainite, produces an acicular microstructure in the steel that has great strength (but less than martensite), greater ductility, higher impact resistance, and less distortion than martensite steel. The disadvantage of austempering is it can be used only on a few steels, and it requires a special salt bath.

Carbon steel cnc turning bush for shaft1

Carbon steel cnc
turning bush for shaft

Carbon steel casting1

Carbon steel cnc
machining black anodizing

Bush parts with blackening treatment

Bush parts with
blackening treatment

Carbon steel turning parts with hexgon bar

Carbon steel turning
parts with hexgon bar

Carbon steel DIN gearing parts

Carbon steel
DIN gearing parts

Carbon steel forging machining parts

Carbon steel
forging machining parts

Carbon steel cnc turning parts with phosphating

Carbon steel cnc
turning parts with phosphating

Bush parts with blackening treatment

Bush parts with
blackening treatment


Product detail pictures:

ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts  – GUOSHI detail pictures

ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts  – GUOSHI detail pictures

ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts  – GUOSHI detail pictures

ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts  – GUOSHI detail pictures

ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts  – GUOSHI detail pictures

ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts  – GUOSHI detail pictures

ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts  – GUOSHI detail pictures


Related Product Guide:

We love an incredibly fantastic standing amid our consumers for our superb item high quality, aggressive rate and also the finest assistance for ODM Famous Expansion Flange Quotes Pricelist - Carbon steel parts – GUOSHI , The product will supply to all over the world, such as: Berlin, Slovakia, Lebanon, Our company insists on the purpose of "takes service priority for standard, quality guarantee for the brand, do business in good faith, to offer skilled, rapid, accurate and timely service for you". We welcome old and new customers to negotiate with us. We are going to serve you with all sincerity!
  • This supplier offers high quality but low price products, it is really a nice manufacturer and business partner.
    5 Stars By Sabina from Tanzania - 2017.10.27 12:12
    Problems can be quickly and effectively resolved, it is worth to be trust and working together.
    5 Stars By Julia from Macedonia - 2018.10.31 10:02
    Write your message here and send it to us